Article 10419

Title of the article

STUDY OF THE EFFECT OF TEMPERATURE FOR HYDROTHERMAL SYNTHESIS ON THE PROPERTIES OF MICRO/NANOSTRUCTURED SAMARIUM GARNET FERRITE POWDERS 

Authors

Tsidaeva Natal'ya Il'inichna, Candidate of physical and mathematical sciences, associate professor, director of Scientific and educational center of natural sciences, North Ossetian State University named after K. L. Khetagurov (27 Butyrina street, Vladikavkaz, Russia), E-mail: tsidaevan@mail.ru
Nakusov Akhsarbek Taymurazovich, Candidate of chemical sciences, senior staff scientist, Scientific and educational center of natural sciences, North Ossetian State University named after K. L. Khetagurov (27 Butyrina street, Vladikavkaz, Russia), E-mail: shasha_nat@mail.ru
Khaymanov Spartak Aleksandrovich, Engineer, Scientific and educational center of natural sciences, North Ossetian State University named after K. L. Khetagurov (27 Butyrina street, Vladikavkaz, Russia), E-mail: sh_khaymanov@mail.ru
Khubaev Azamat Kazbekovich, Postgraduate student, Scientific and educational center of natural sciences, North Ossetian State University named after K. L. Khetagurov (27 Butyrina street, Vladikavkaz, Russia), E-mail: azamathubaev@mail.ru
Silaev Ivan Vadimovich, Candidate of physical and mathematical sciences, associate professor, sub-department of condensed matter physics, North Ossetian State University named after K. L. Khetagurov (27 Butyrina street, Vladikavkaz, Russia), E-mail: bigjonick@yandex.ru 

Index UDK

544.778.4 

DOI

10.21685/2072-3040-2019-4-10 

Abstract

Background. The increased interest of researchers in nanoobjects is caused by the detection of unusual physical and chemical properties in them, which is related to the demonstration of so-called "quantum dimensional effects". A special place among them is occupied by magnetic properties, in which differences between massive (bulk) material and nanomaterials are most clearly evident. By changing the size, shape, composition and structure of the nanoparticles, it is possible to control the magnetic characteristics of the materials based on them within certain limits, which makes the presented research results undoubtedly relevant. The aim of this work is an experimental study of the effect of hydrothermal synthesis temperature on the magnetic properties of nanostructured samarium garnet ferrite powders.
Materials and methods. The chemical and phase composition of synthesized samarium garnet ferrite powders was examined by X-ray phase analysis on a Bruker D8 Advance diffractometer. The experiment was conducted with a vertical copper goniometer with a wavelength of CuKα = 1,54 Å at angles θ/2θ = 10º – 90º. Ranges of the Raman dispersion at the room temperature registered by the Raman spectrometer of Jobin-Yvon (LabRAM ARAMIS) equipped with the CCD detector and the diode junction laser (λ = 785 nm) 35 mW as an excitation source. The magnetic properties of the synthesized samples were examined at room temperature on a Quantum Design Physical Property Measurement System (QuantumDesign PPMS) magnetometer.
Results. Nanostructured samarium garnet ferrite powders were synthesized by a light hydrothermal method at various temperatures. The dependence of magnetic characteristics on the value of external magnetic field taking into account the temperature of powder synthesis has been investigated. Comparison was made with the experimental data of other authors and good agreement with them was demonstrated. The mechanisms of magnetic activity of samarium garnet ferrite powders have been suggested.
Conclusions. Change of temperature of soft hydrothermal synthesis can be successfully controlled by magnetic properties of samarium ferrites with different morphology of particles. 

Key words

nanostructured powders, rare earth garnet ferrite, orthoferrites, hydrothermal synthesis 

 Download PDF
References

1. Tikhonov P. A., Nakusov A. T., Bykov V. N., Plamadyala N. V., Rodionov V. S. Ogneupory i tekhnicheskaya keramika [Refractories and technical ceramics]. 2005, no. 11, pp. 25–30. [In Russian]
2. Tikhonov P. A., Nakusov A. T., Kocheregin S. B., Bestaev M. V., Kalinina M. V., Drozdova I. A. Ogneupory i tekhnicheskaya keramika [Refractories and technical ceramics]. 2005, no. 4, pp. 24–31. [In Russian]
3. Pashkov A. D., Khubaev A. K., Tsidaeva N. I., Abaeva V. V., Turiev A. M., Enaldieva E. V., Butkhuzi T. G., Khaimanov S. A., Ramonova A. G. Sovremennye naukoemkie tekhnologii [Modern high technology]. 2014, no. 5-2, pp. 116–118. [In Russian]
4. Khubaev A. K., Pashkov A. D., Tsidaeva N. I., Abaeva V. V., Turiev A. M., Enaldieva E. V., Butkhuzi T. G., Khaimanov S. A., Ramonova A. G. Sovremennye naukoemkie tekhnologii [Modern high technology]. 2014, no. 5-2, pp. 131–132. [In Russian]
5. Tsidaeva N. I., Khaimanov S. A., Turiev A. M., Abaeva V. V., Khubaev A. K. 59th Annual Conference on Magnetism and Magnetic Materials Book of abstracts. 2014, p. 874.
6. Tikhonov P. A., Nakusov A. T., Drozdova I. A., Kalinina M. V., Domanskiy A. I. Fizika i khimiya stekla [Physics and chemistry of glass]. 2005, vol. 31, no. 5, pp. 962–974. [In Russian]
7. Niyaifar M., Mohammadpour H., Khalafi N. Journal of Alloys and Compounds. 2016, vol. 688, pp. 357–362.
8. Cai K., Shen W., Ren B., He J., Wu S., Wang W. Chemical Engineering Journal. 2017, vol. 330, pp. 936–946.
9. Wu X., Ding Z., Song N., Li L., Wang W. Ceramics International. 2016, vol. 42, no. 3, pp. 4246–4255.
10. Yuan L. et al. Crystal Growth & Design. 2016, vol. 16, no. 11, pp. 6522–6530.
11. Wu X., Wang W., Song N., Yang X., Khaimanov S., Tsidaeva N. Chemical Engineering Journal. 2016, vol. 306, pp. 382–392.
12. Al Habashi R., Abbas Z. Journal of Nanoparticle Research. 2014, vol. 29, pp. 59–64.
13. Liu H. et al. Journal of Materials Chemistry. 2016, vol. 4, no. 44, pp. 10529–10537.
14. Gupta S., Medwal R., Pavunny S. P., Sanchez D., Katiyar R. S. Ceramics International. 2018, vol. 44, no. 4, pp. 4198–4203.
15. Chen C.-S. et al. Journal of the American Ceramic Society. 2018, vol. 101, no. 2, pp. 883–896.
16. Guo L., Yuan H.-M., Huang K.-K., Yuan L., Liu S.-K., Feng S.-H. Chemical Research in Chinese Universities. 2011, vol. 27, no. 5, pp. 715–719.
17. Wang W., Cai K., Wu X., Shao X., Yang X. Journal of Alloys and Compounds. 2017, vol. 722, pp. 532–543.
18. Opuchovic O., Kareiva A., Mazeika K., Baltrunas D. Journal of Magnetism and Magnetic Materials. 2017, vol. 422, pp. 425–433.
19. Caffarena V. R., Ogasawara T., Pinho M. S., Capitaneo J. L. Latin American Applied Research. 2006, vol. 36, pp. 137–140.
20. Song J. J., Klein P. B., Wadsack R. L., Selders M., Mroczkowski S., Chang R. K. Journal of the Optical Society of America. 1973, vol. 63, no. 9, pp. 1135–1140.
21. Peng M. S., Mao H. K., Li D. E., Chao C. T. Chinese Journal of Geochemistry. 1994, vol. 13, no. 2, pp. 176–183.
22. Fechine P. B. A., Silva E. N., Menezes de A. S., Derov J., Stewart J. W., Drehman A. J., Vasconcelos I. F., Ayala A. P., Cardoso L. P., Sombra A. S. B. Journal of Physics and Chemistry of Solids. 2009, vol. 70, pp. 202–209.
23. Rousseau D. L., Bauman R. P., Porto S. P. S. J. Raman Spectrosc. 1981, vol. 10, no. 1, pp. 253–290.

 

Дата создания: 21.04.2020 12:25
Дата обновления: 21.04.2020 14:59